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Abstract. Knowledge of the variability of the hydrograph of outflow from urban catchments is highly important for 

measurements and evaluation of the operation of sewer networks. Currently, hydrodynamic models are most frequently used 15 

for hydrograph modeling. Since a large number of their parameters have to be identified, there may be problems at the 

calibration stage. Hence, the sensitivity analysis is used to limit the number of parameters. However, the current sensitivity 

analysis methods ignore the effect of the temporal distribution and intensity of precipitation in a rainfall event on the catchment 

outflow hydrograph. The article presents the methodology of construction of a simulator of catchment outflow hydrograph 

parameters (volume, maximum flow). For this purpose, uncertainty analysis results obtained with the use of the GLUE 20 

(Generalized Likelihood Uncertainty Estimation) method were used. An innovative sensitivity coefficient has been proposed 

to study the impact of the variability of hydrodynamic model parameters depending on rainfall distribution, rainfall genesis 

(in the Chomicz scale), and uncertainty of estimated simulator coefficients on the parameters of the outflow hydrograph. The 

results indicated a considerable influence of rainfall distribution and intensity on the sensitivity factors. The greater the 

intensity and temporal distribution of rainfall, the lower the impact of the identified hydrodynamic model parameters on the 25 

hydrograph parameters. Additionally, the calculations confirmed the significant impact of the uncertainty of the estimated 

coefficient in the simulator on the sensitivity coefficients, which has a significant effect on the interpretation of the relationships 

obtained. The approach presented in the study can be widely applied at the model calibration stage and for appropriate selection 

of hydrographs for identification and validation of model parameters. 

https://doi.org/10.5194/hess-2021-99
Preprint. Discussion started: 7 April 2021
c© Author(s) 2021. CC BY 4.0 License.



2 

 

1 Introduction  30 

Climate change and progressive urbanization result in an increase in the volume of stormwater outflow from catchments, which 

leads to flooding, and deterioration of water quality in receivers (Crocetti et al., 2020; Fletcher et al., 2013). To reduce the 

incidence of these phenomena, there is a need to runoff model. This can be achieved using hydrodynamic models based on 

physical equations representing stormwater outflows. One of the common tools is the SWMM (Stormwater Management 

Model) program (Buahin and Horsburgh, 2015; Crocetti et al., 2020; Gironás et al., 2010). Due to the interactions between 35 

parameters identified in the models, they may be difficult to calibrate and the results may be biased. Therefore, statistical 

models are used for simulation of runoffs, which has been shown in a number of studies (Gernaey et al., 2011; Yang and Chui, 

2020). A serious drawback of many models (the so-called black box techniques) is their inability to interpret structural 

parameters (Zoppou, 2001). 

The hydrodynamic model must be calibrated to reflect the conditions prevailing in the real system. Calibration of the catchment 40 

model is a complex task aimed at determination of the optimal values of parameters with a satisfactory goodness-of-fit of 

calculation outcomes and measurement results (Bárdossy, 2007; Dotto et al., 2012; Guan et al., 2015). Parameter values are 

determined for an appropriate form of the objective function in which one or more criteria (maximum instantaneous flow, 

hydrograph volume, mean relative or absolute error of flow prediction) can be included. Since the description of the stormwater 

outflow from the catchment is complicated, modeling the phenomenon requires knowledge of many parameters (physical and 45 

geographical characteristics of the catchment and the sewer network). A number of these parameters can be determined using 

detailed spatial data (GIS), as indicated in numerous studies (Fraga et al., 2016; Leandro and Martins, 2016). This helps to 

reduce the number of variables included in the calibration. However, since a large number of parameters must be included in 

the models, there may be problems with identification of their values. Therefore, the aim is usually to simplify the calibration 

process by elimination of factors that have a negligible impact on simulation results. Hence, model sensitivity analysis is 50 

employed. 

As shown by literature review (Chisari et al., 2018; Tolley et al., 2019; Xu et al., 2019), the analysis is often applied at the 

stage of calibration of mathematical models. In practice, local and global sensitivity analysis methods, which can be 

implemented for statistical and physical relationships, are used (Link et al., 2018; Morio, 2011; Cristiano, et al. 2019). In the 

case of the local sensitivity analysis, the calculations consist in determination of the derivative value at a given point, which is 55 

the basis for assessment of the effect of the variance of the variables on the modeled value (Razavi and Gupta, 2015). One of 

the drawbacks of the local sensitivity analysis is the fact that the variability of the analyzed phenomenon and the effect of 

variables are considered in the narrow domain of the modeled variable (Pianosi et al., 2016). This approach ignores the fact 

that the sensitivity of the model in the domain of the output values may change, which may be important for calibration of the 

model at the validation stage and its course. In the case of non-linear models, the local sensitivity analysis does not take into 60 

account the character of the relationships between the explanatory variables and the dependent variable. Then, the sensitivity 

coefficient is calculated only for the mean level of the explanatory variable. Nevertheless, this method is widely used in the 
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analysis of the sensitivity of models describing runoff in urban catchments, which has been confirmed by numerous studies 

(Ballinas-González et al., 2020; Liu et al., 2020; Yang et al., 2019). Another shortcoming of sensitivity analysis based on 

partial derivatives is the fact that the effects of individual variables on the output variable are estimated with the other variables 65 

kept constant. This is rarely observed in the case of complex relationships, as the explanatory variables are then correlated to 

some extent. The Cateris Paribus analysis does not take this fact into account. Consequently, the effects of individual variables 

may be overestimated. 

The global sensitivity analysis does not have many of the aforementioned disadvantages. One of the simplest methods used in 

many cases is based on multiple linear regression (Ashley and Parmeter, 2020; Touil et al., 2016). However, the results of the 70 

sensitivity analysis can be considered reliable when the coefficient of determination reflecting the relationship between the 

dependent variable and the explanatory variables is not lower than 0.70. When this requirement is not met, other methods for 

global sensitivity analysis should be applied (Saltelli et al., 2007). Variance methods, which facilitate estimation of the 

contribution of the individual parameters to the model output variance using the Monte Carlo method, are more precise and 

more computationally complex. The global sensitivity analysis (GSA) method is one of the commonly used approaches. It has 75 

been subjected to modifications, as described in Iooss and Lemaître (2015). Variance methods are currently gaining increasing 

interest, which is confirmed by the number of publications in this field. However, since implementation thereof is complicated, 

simplified methods are used in many cases despite the major advantage of variance approaches over the local analysis methods. 

The implementation of the global sensitivity analysis methods is not a simple task, as it requires complex mathematical tools, 

which limits their application. 80 

Given the information specified above, the paper presents an original application of the logistic regression method for 

sensitivity analysis. The advantage of the model is the fact that it has the form of a statistical relationship; hence, without the 

need for complex analyses, it can be used to determine the effect of parameters included in the calibration of the catchment 

model, precipitation characteristics, and absolute values of the modeled dependent variables on the parameters of outflow 

hydrographs (maximum instantaneous flow, hydrograph volume). The approach proposed in the present study also facilitates 85 

analysis of the sensitivity of selected explanatory variables, depending on the numerical values of the modeled hydrograph 

parameters of catchment runoff. At the stage of sensitivity analysis, the effect of the uncertainty of coefficients estimated in 

the statistical model (logistic regression) on the calculation results is included, which is reflected in the determined sensitivity 

coefficients. Since the model is constructed based on simulation results provided by the Monte Carlo method, which is typical 

for global sensitivity analysis methods, this approach can complement and extend the results of GSA calculations. Summing 90 

up, the sensitivity analysis used in the present study represents a fusion of local and global sensitivity analysis through 

combination of logistic regression in phenomenon modeling with partial derivatives. Since logistic regression is not an example 

of a black-box method, as it has an explicit form of dependence between the modeled probability of success and explanatory 

variables, the use of partial derivatives for assessment of the sensitivity of the model to individual parameters seems reasonable. 

Especially in the case of an implicit, complex, and non-linear dependence, it is recommended that variance-based techniques 95 

such as the Sobol method should be employed. Partial derivatives used in the logistic regression model increase the flexibility 
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of this method, as it is possible to assess the model sensitivity to individual parameters at any point in the domain. An additional 

modification can be the use of a standardized local sensitivity analysis method based on logarithms of dependent and 

explanatory variables. This facilitates assessment of the effect of the percentage increase in the explanatory variable on the 

percentage increase in the dependent variable. 100 

2 Study object 

The analysis in this study was carried out in a catchment with a total area of 62 ha, located in the south-eastern part of the city 

of Kielce, central Poland (Fig. 1). Six types of impervious surfaces were distinguished in the catchment: sidewalks, roads, 

parking lots, greenery, school playgrounds, and roofs (with 72.5% of their area directly connected to the stormwater sewer 

system). The main canal is 1.6 km long with a diameter in the range of Ø 0.60–1.25 m. Detailed information about the analyzed 105 

catchment was provided by Kiczko et al. (2018). The analysis of measurement data (2010–2016) from the catchment 

distinguished a dry period of 0.16-60 days. The annual precipitation depth was 537–757 mm and the number of days with 

precipitation was in the range of 155–266. The number of storms per year in the analyzed period ranged from 27 to 47. The 

area was characterized by an average annual temperature of 8.1–9.6o C and 36–84 snowfall days. The analysis of flow 

measurement data recorded with the MES1 flow meter revealed that the instantaneous stormwater stream in the dry periods 110 

was in the range of 0.001–0.009 m3/s, which indicates an infiltration effect in the sewer network. 

 

Figure 1. Scheme of the hydrodynamic model of the catchment generated in the SWMM program. 
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The analyzed sewer system consists of 200 manholes and 100 conduit sections with Ø 0.20–1.25 m diameters and longitudinal 

slopes of 0.1–2.7 %, which gives a retention capacity of 2032 m3. Maningʼs roughness coefficient for the conduit is in the 115 

range of 0.010÷0.018 m-1/3·s. The average retention depth is 2.5 mm in the impervious areas and 6.0 mm in the pervious 

surfaces, which gives a weighted mean of 3.81 mm for the entire catchment. Stormwater is discharged from the catchment 

through the S1 channel to the diversion chamber (DC), and some part is discharged directly to the stormwater treatment plant 

(STP) to the filling level hm=0.42 m. After exceeding the hm value, the stormwater is discharged via the stormwater overflow 

(OV) into channel S2, which discharges the stormwater into the Silnica River. 120 

As part of the continuous monitoring carried out in 2009–2011, the volume of stormwater outflow from the catchment was 

measured using a flow meter installed in the S1 channel at a distance of 3.0 m from the inlet to the DW chamber. In turn, in 

2015, parallel MES1 and MES2 flow meters were installed in the inlet (S1) and discharge (S2) channels to measure the flow 

and stormwater level. A detailed description of the stormwater catchment and installed measuring equipment is provided in 

Szeląg (2016). 125 

The catchment (Fig.1) had previously been analyzed to determine the variability of the quantity and quality of stormwater and 

the operation of the sewer system based on the catchment hydrodynamic model generated in the SWMM program. The model 

used in the study was subjected to deterministic (Szelag et al., 2016) and probabilistic (Kiczko et al., 2018) calibration and 

was used as the basis for the sensitivity analysis. It was also subjected to probabilistic calibration with the GLUE+GSA method 

(Szelag et al., 2016). The deterministic calibration is perceived in the present study as a computational case where the 130 

uncertainty and interaction of calibrated parameters in the SWMM model is omitted. The parameters were determined with 

the method of successive substitutions to achieve a sufficiently high degree of agreement between the modeled and measured 

hydrographs. 

4 Methodology 

4.1 Rainfall and separation of independent rainfall events 135 

The methodology described in the DWA-A 118E (2006) guidelines was adopted in the study to separate independent rainfall 

events. The interval between successive independent rainfall events was 4 hours. The minimum rainfall depth (3.0 mm) 

constituting a rainfall event was adopted as in the studies conducted by Fu et al. (2011) and Fu and Butler (2014). Independent 

rainfall events were distinguished based on series of rainfall (2010–2016) measured at the rainfall station located at a distance 

of 2 km from the Si9 collector catchment and the definition of a rainfall event specified above. The number of events in the 140 

individual study years was estimated at 36 – 58. The rainfall duration (tr) in the events was 20 – 2366 min, and the length of 

the dry period was 0.16 ÷ 60 days. The rainfall depth (Ptot) in the rainfall events was in the range of 3.0 – 45.2 mm. 
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4.2 Scheme of model analysis 

In the present study, a method of model sensitivity analysis was proposed to predict the stormwater volume (maximum 

instantaneous flow, hydrograph volume) with the use of logistic regression (Fig. 2). The method presented here represents a 145 

group of sensitivity analysis methods based on empirical models. It was assumed that the variable rainfall distribution may 

exert different effects on the sensitivity of the model and induce changes in the calibrated parameters. It was also assumed that 

the sensitivity of the model may change as a result of an increase in the maximum instantaneous stormwater flow and the 

volume of the outflow hydrograph. Due to the non-linearity between the modeled hydrograph parameters and the calibrated 

model coefficients, the use of the linear approach is limited (Chan et al., 2018); therefore, the classification model (logit) was 150 

used in the study. Appropriate threshold values of hydrograph parameters constituting the basis for substitution of continuous 

values with classes were selected in the model. 

On the one hand, this approach is based on the precipitation dynamics during rainfall events specified in the DWA-A 118E 

(2006) guidelines (distribution R1 - constant rainfall intensity during a rainfall event, distribution R2 - maximum rainfall 

intensity in the middle of the rainfall event, i.e. t/tr=0.50, distribution R3 - maximum rainfall intensity for dla t/tr=0.85–1.00, 155 

and distribution R4 - maximum rainfall intensity the initial phase of rainfall). On the other hand, the modeled hydrograph 

parameter values were combined with the rainfall classification, which facilitated generalization of the analysis results. 

Compared to the local and global analysis methods, detailed analysis of changes in the sensitivity to the effect of calibrated 

coefficients is possible the proposed approach, taking into account values of the modeled parameters of the catchment outflow 

hydrograph. This has been scarcely considered in this approach so far. The calculation algorithm presented in this study 160 

consists of three elements (Fig. 2). The first one comprises a simulator of parameters of the catchment outflow hydrograph 

(statistical model generated with the logistic regression method), which includes rainfall characteristics and coefficients 

calibrated in the hydrodynamic catchment model (here: SWMM - Storm Water Management Model). 
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where: calibrated coefficients its mean the same   165 

 

Figure 2:  Calculation algorithm scheme in a logit model. 

The simulator was constructed based on simulations performed with the use of calculations in the catchment model, which 

included the uncertainty of the identified coefficients subjected to calibration. The approach proposed here is applied in 

computational experiments at the stage of generation of mathematical models for urban catchments, as described by Thorndahl 170 

et al. (2009). It is important that the distribution of coefficients (tab. 1) used for GLM identification should result from their 

https://doi.org/10.5194/hess-2021-99
Preprint. Discussion started: 7 April 2021
c© Author(s) 2021. CC BY 4.0 License.



8 

 

actual variability. The distribution can be determined by probabilistic identification of calibrated coefficients. The GLUE 

methodology, in which the variability of calibrated coefficients is determined by selecting the so-called behavioral simulations, 

was employed in this study. Based on a posteriori distributions of calibrated coefficients in the catchment model determined 

by observation data, simulations of catchment outflow hydrographs were performed based on the separated rainfall events in 175 

continuous rainfall time series (2010–2016), for which typical rainfall distribution was assumed independently (R1, R2, R3, 

R4). This was the basis for determination of the outflow hydrograph parameters - maximum instantaneous flow (Qm) and 

hydrograph volume (V). 

The second stage consisted in establishment of the so-called threshold values of maximum flow (Qm,g) and hydrograph volume 

(Vg), which served as the basis for the division into rainfall events with different intensity and their distribution in the time 180 

series (ξ=R1, R2, R3, R4). Establishment of general rules for selection of threshold values may be very difficult, as they are 

the result of the response of the catchment to the rainfall, which is catchment-specific. These may be characteristic values of 

flows influenced by the presence of objects in the sewer network (stormwater overflows, etc.) at which they begin to operate. 

An alternative approach is to apply rainfall classification measures (proposed by Chomicz (1951), Sumner (1988), etc.), which 

allow determination of the characteristic parameters of hydrographs. The rainfall classes in the Sumner scale determine the 185 

extremely different hydraulic conditions prevailing in the sewer network, which may not always be used in practice for 

measurements and calibration. In the present study, the reference rainfall values determined in the regional classification scale 

proposed by Chomicz (1951) were the basis for the selection of threshold values (maximum instantaneous flow, hydrograph 

volume) in accordance with the following equation: 

 𝑃𝑡𝑜𝑡 = 𝑈 = 𝛼0 · √𝑡𝑟            (1) 190 

where: tr – rainfall duration, Ptot – rainfall depth equal to its efficiency, α0 – rainfall efficiency coefficients taking into account 

the normal, heavy, and torrential rain types. 

Based on the Chomicz (1951) classification of rainfall, outflow hydrographs were calculated, their parameters (Qm, V) were 

determined, and classification variables were defined. When the calculated values Q(Ptot, tr, ζ, θ) and V(Ptot, tr, ζ, θ) (where: ζ 

is a function describing the temporal intensity distribution; θ is a function taking into account the uncertainty of the calibrated 195 

parameters in the catchment model) are smaller than the threshold values, they have the value of 0; otherwise, they are equal 

to 1. 

In the third stage, logistic regression models were developed for the values of the explanatory variables (P tot, tr, ζ, and xj - 

values of calibrated coefficients in the catchment model; rainfall characteristics) and for the established dependent (zero-one) 

variables for the adopted threshold values (Qg,m and Vg) and temporal rainfall distribution (ζ). The subsequent stage of the 200 

analyses consisted in determination of the values of the sensitivity coefficients (Sxj) in accordance with the methodology 

described later in this study. 

Based on the calculation scheme described above, the paper presents the next stages of construction of a logit model. A 

catchment model generated in the SWMM program was used for this purpose. The threshold values were determined in 

accordance with the Chomicz (1951) classification, in which the following categories of rainfall were defined: normal rain 205 
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(α0=1.00), heavy rain (α0=1.40), and torrential rain (α0=5.66), assuming a constant temporal rainfall distribution and rainfall 

duration tr=15 min. For these assumptions, the depth of rainfall was determined from Eq. (1), and catchment outflow 

hydrographs were simulated using the calibrated catchment model. 

4.3 Logistic regression 

The logistic regression model, also known as the binomial logit model, is usually employed for analysis of binary data and can 210 

be used to determine the probability and identify the occurrence of events (Jato-Espino et al., 2018; Li and Willems, 2019; 

Szeląg et al., 2020). The maximum amount of stormwater outflow from the catchment and the hydrograph parameters of any 

rainfall event can be calculated using hydrodynamic models, e.g. SWMM. An alternative solution are statistical models 

(hydrograph simulators are considerably easier to implement than physical models), for instance the generalized linear model 

(GLM), which comprises the variability of rainfall characteristics and the uncertainty of calibrated coefficients, shown in the 215 

following equation: 

𝑄(𝜇)𝑚 = 𝛼0 + 𝛼1 · 𝑃𝑐 + 𝛼2 · 𝑡𝑑 + 𝛼3 · 𝑥1 + 𝛼4 · 𝑥2 + ⋯ + 𝛼𝑗+2 · 𝑥𝑗       (2) 

where: α0 – intercept, α1, α2, …, αj+2 – empirical coefficients determined with the maximum likelihood method, Ptot – rainfall 

depth, tr – rainfall duration, x1, 2, j=n – calibrated coefficients in the SWMM model, Qm – link function determining the 

relationship of the mean value of the dependent variable μ with the linear combination of predictors. 220 

Assuming that μ=p and introducing the link function referred to as logit, it is possible to transform the modeled values of 

dependent variables included in Eq. (2) into a new (zero-one) system describing the probability values: 

𝑄(𝑝) = 𝑄(𝜇)𝑚 = 𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛 (
𝑝

1−𝑝
) =  𝑒𝑥𝑝(𝛼0 + 𝛼1 · 𝑃𝑡𝑜𝑡 + 𝛼2 · 𝑡𝑟 + 𝛼3 · 𝑥1 + 𝛼4 · 𝑥2 + ⋯ + 𝛼𝑗+2 · 𝑥𝑗) (3) 

This approach may prove especially useful when the results of calculations in the multiple linear regression model exhibit 

unsatisfactory convergence (R2<0.70) and it is therefore advisable to introduce classification variables, which is a simplifying 225 

solution. Moreover, this approach makes it possible to emphasize and include relationships that might be omitted in the 

calculations of multiple linear regression, as demonstrated in many reports (Hosmer and Lemeshow, 2000; Kleinbaum and 

Klein, 2010; Myers et al., 2010). Since the continuous values Q(Ptot, tr, xj)m are transformed into the probability space p by the 

logit function in this case, it is reasonable to equate them with the determined p(Ptot, tr, xj) values for a given threshold Qg,m 

(Fig. 2). In the transformed data system (expressing probability) varying in the range of 0–1, it was shown that the effect of 230 

the change in individual variables (xj) by Δxj on the p value is described by the following equation: 

𝑆𝑥𝑗
=

𝜕𝑝

𝜕𝑥𝑗
·

𝑥𝑗

𝑝
=

𝑝(𝑥𝑗,𝑔+∆𝑥𝑗)−𝑝(𝑥𝑗,𝑔; 𝑄𝑔,𝑚)

(𝑥𝑗,𝑔+∆𝑥𝑗)−𝑥𝑔,𝑗
∙

𝑥𝑗

𝑝(𝑥𝑗,𝑔; 𝑄𝑔,𝑚)
  = 𝛼𝑗+2 · 𝑥𝑗 · (1 − 𝑝(𝑥𝑗,𝑔;  𝑄𝑔,𝑚))    (4) 

where: Q, p(xj,g + Δxj) – maximum flow value (Fig. 2a) and the probability of exceeding thereof for value (xj,g +Δxj) (Fig. 2b); 

Q(xj,g)m,g – maximum instantaneous outflow from the catchment; p(xj,g; Qm,g) – probability of exceeding the threshold value 
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Qg,m for the given explanatory variables (Ptot, tr, x1, x2, x3, …,xn) equal to p=0.50 (most of the considerations in the present 235 

analyses related to the value p=0.50, as this value corresponds to that of Qg,m in the probability scale p). 

 

Figure 3: Calculation diagram showing the effect of changes in the xj,g value by Δxj on (a) the flow volume Qm; (b) probability of 

exceeding p(Qg,m; xj,g)=0.50. 

As indicated in Fig. 3, an increase in xj,g by Δxj results in a decrease in the Qg,m value by ΔQm and yields a flow value of Qξ, 240 

which facilitates determination of the numerical value of the sensitivity coefficient described by Eq. (4). In the transformed 

space (see Fig. 2b), the increase in the xj,g value (corresponding to p=0.50 and the threshold value Qg,m) to the value of xj,g + 

Δxj is accompanied by a decline in the p value by Δp to the value p*. In these analyses, the determined p* value corresponds to 

Qm
*, which can be defined as Qg,m – f(p, p*), and the relationship can be expressed as follows: 

𝑆𝑥𝑗
=

𝑄(𝑥𝑗,𝑔+𝜀·∆𝑥𝑗)
𝑚

∗
−𝑄(𝑥𝑗,𝑔)

𝑔,𝑚

(𝑥𝑗,𝑔+𝜀·∆𝑥𝑗)−𝑥𝑗,𝑔
·

𝑥𝑗

𝑄(𝑥𝑗,𝑔)
𝑔,𝑚

=
𝑓(𝑝,𝑝∗)−𝑄(𝑥𝑗,𝑔)

𝑔,𝑚

(𝑥𝑗,𝑔+𝜀·∆𝑥𝑗)−𝑥𝑗,𝑔
∙

𝑥𝑗

𝑄(𝑥𝑗,𝑔)
𝑔,𝑚

       (5) 245 

where: ε – empirical coefficient for conversion of the Qm
*value into p*. The p* value can be related to Qm

*<Qm,g; hence, the 

effect of changes in the xj value on the calculation results can be inferred and the sensitivity coefficient can be determined 

from Eq. (5). Assuming a p-value of 0.50 for the analyses was driven by the fact that the logit models determined should be 

universal, which is important from the point of view of being able to generalise the results obtained and apply them also to 

other urban catchments (Jato - Espino et al., 2018; Li and Willems 2019; Szeląg et. al., 2020). 250 

 

The following parameters were included in the assessment of the predictive abilities of logit models: sensitivity– SENS 

(reflects the correctness of classification of data in a dataset p > p(Qg,m)), specificity – SPEC (reflects the correctness of 

classification of data in a dataset p<p(Qg,m)), and calculation error Rz
2 (reflects the correctness of classification of events at 

p<p(Qg,m) and p<p(Qg,m)), as described in detail by Hosmer and Lemeshow (2000) and Szeląg et al. (2020).  255 
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4.4 Analysis of the uncertainty of estimated coefficients in the logit model 

The study comprised the analysis of the effect of the parametric uncertainty of the logit models on the results of calculations 

of probability p as propagation of the uncertainty of the model coefficients. Moreover, the values of the sensitivity coefficients 

of individual factors Sxi were determined. The calculation of uncertainty in the scheme presented in Fig. 1 consisted of the 

following steps: 260 

 determination of mean coefficient values (αj) and their standard deviations (σj) in logistic regression models used for 

determination of normal distributions N(μα, σα)i, 

 T-fold sampling of the αj
* value with the Monte Carlo method based on the developed theoretical distributions Nj, 

 determination of probability curves for exceeding the Qg,m value, i.e. p*=f(Ptot, tr, ζ, xn, N(μα, σα)) and sensitivity 

coefficients Sxi
*=F(Ptot, tr, ζ, xn, N(μα, σα)) from Eq. (4) as well as the relevant percentiles. 265 

On the basis of the determined logit models for the assumed cut-off thresholds Qg,m depending on the temporal rainfall 

distribution (ζ), probability curves described by Eq. (3) were plotted and the values of sensitivity coefficients Sxi were 

determined from Eq. (4) for individual explanatory variables. 

4.5 GLUE (Generalized Likelihood Uncertainty Estimation) 

The model uncertainty was estimated using Generalized Likelihood Uncertainty Estimation (Beven and Binley, 1992). It was 270 

assumed that model uncertainty can be described by the random variability of its calibrated coefficients. The coefficients 

variability ranges for the SWMM of the Kielce basin were investigated in previous studies (Kiczko et al., 2018; Szelag et al., 

2016). They are shown in Table 1. In the previous studies conducted by Kiczko et al. (2018) and Szeląg et al. (2016), the 

parameter identification was performed along with the Bayesian approach, using likelihood functions. The parameters were 

identified on the basis of Bayesian estimation (Beven and Binley, 1992): 275 

𝑃(𝑄/𝜃) =
𝐿(𝑄/𝜃)𝑃(𝜃)

∫ 𝐿(𝑄/𝜃)𝑃(𝜃)𝑑𝜃
            (6) 

where 𝑃(𝜃) stands for a priori (Table 1) calibrated coefficients distribution (uniform distribution was applied in the present 

study), 𝐿(𝑄/𝜃) a likelihood function used to calculate weights for the Monte Carlo sample, depending on the model fit to the 

observed basin flows Q and 𝑃(𝑄/𝜃) resulting in a posteriori distribution of model coefficients 𝜃. The following formula was 

used as the likelihood function (Romanowicz and Beven 2006): 280 

𝐿(𝑄 𝜃⁄ ) = 𝑒𝑥𝑝 (
∑ (𝑄𝑖−𝑄�̂�)2𝑁

𝑖=1

𝜅·𝜎2 )          (7) 

where 𝑄𝑖  and 𝑄�̂� -i-th value from the times series of observed and computed flows; 𝜅 is the scaling factor for the variance 𝜎2 

of model residuals, used to adjust the width of the confidence intervals. In the study conducted by Kiczko et al. (2018), the 

value of 𝜅 was determined, ensuring that 95% of observed flow points are enclosed by 95% confidence intervals of the model 

output.  285 
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The coefficients in the ranges given in Table 1 were uniformly sampled 5000 times, and the model was evaluated for each set. 

The simulation goodness-of-fit was determined as the standard deviation of computed and observed outflow hydrographs. The 

behavioral simulations were selected using a threshold value of deviation, i.e. simulations with poorer fit were rejected. The 

threshold value was determined iteratively to ensure that confidence intervals explained the model uncertainty in respect of 

the observation. The goal was to enclose 95% observation points within 95% confidence intervals. Confidence intervals were 290 

calculated on the basis of empirical cumulative distribution functions of an ensemble of modeled hydrographs. The value of 

the threshold was iteratively increased to reach the above assumption. 

 

Table 1. Ranges of SWMM model coefficients (Kiczko et al., 2018) 

Parameters Unit Range 

Coefficient for flow path width (α) – 2.7–4.7 

Retention depth of impervious areas (dimp) mm 0.8–4.8 

Manning roughness coefficient for impervious areas (nimp) m-1/3·s 0.010–0.022 

Manning roughness coefficient for sewer channels (nsew) m-1/3·s 0.010–0.048 

 295 

Coefficients were identified and the threshold was adjusted for two rainfall events of 24 July 2011 and 15 September 2010. 

The size of the behavioral set was as 5000. It should be noted that it is assumed in the above approach that the simulations 

from the behavioral set are equally probable. In this study, analyses were limited to four parameters in the SWMM model. 

This is because the calculations performed by Szeląg et al. (2016) for the study catchment showed that the coefficients in the 

Horton's model as well as the Manning's roughness coefficient and the retention depth of pervious area have an insignificant 300 

influence on the results of the catchment outflow hydrograph calculations. With precise spatial data about the catchment, it 

was shown that the uncertainty in the identification of impervious areas also has a insignificant influence on the modeled 

outflow hydrogram (Szeląg 2013, 2016). Based on the continuous rainfall series from the period of 2010–2016 and the 

determined a posteriori distributions of calibrated coefficients in the SWMM model, simulations of the combinations of 

numerical values [α, nimp, dimp, nsew] (5000 samples) were carried out, which facilitated determination of catchment outflow 305 

hydrographs (Fig. 3B, Appendix). On this basis, parameters, i.e. maximum instantaneous outflow (Qm) and volume (V), were 

determined for each calculated hydrograph. The results of these analyses were used for development of logit models for the 

established threshold values (Qg,m, Vg) and the assumed temporal rainfall distributions (R1, R2, R3, R4). In the knowledge that 

the number of rainfall events in the period (2010 - 2016) is 321 rainfall events, 1605000 rainfall event simulations were 

performed (considering the uncertainty of the SWMM model) of which 120000 episodes were separated for logit model 310 

validation. 
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4.6 Hydrodynamic model 

The SWMM 5.1 model was used to simulate the outflow from the catchment. The hydrodynamic model considered in this 

study consists of 92 partial catchments, 200 manholes, and 72 conduit sections. The proportion of impervious areas in the 

individual sub-catchments ranges from 5% to 90%, and the average slope of the area is 0.5–6%. The surface area of the partial 315 

catchments varies from 0.12 ha to 2.10 ha. After calibration, the Manning roughness coefficient for the sewer channels had a 

value nsew=0.018 m-1/3·s, the roughness coefficient and retention depth for the impervious areas were nimp=0.020 m-1/3·s and 

dimp=1.65 mm, respectively, and the flow path width expressed as W=αS·A0.50 was αS=2.00 (Kiczko et al., 2018).  

The analyzed catchment model was calibrated and used in the analysis of the quantity and quality of stormwater outflow from 

the catchment, the operation of stormwater treatment plant, and the function of the stormwater system, which was reported in 320 

detail by Szeląg et al. (2016) and Kiczko et al. (2018). The sensitivity analysis and calibration of the catchment model were 

performed with the GLUE+GSA method as well (Szeląg et al., 2016). 

4.7 Verification of generated logit models for analysis of hydrograph parameters 

The suitability of the generated logit models for simulation tasks in the case of the stormwater catchment analyzed in the study 

was verified vs. measurement data. Since the temporal rainfall distributions in the rainfall events derived from measurements 325 

varied, they were assessed and adjusted to the theoretical distributions presented in this study (see Fig. B1 – Appendix B) 

based on the value of the correlation coefficient (R) expressing the goodness-of-fit of empirical distributions 
𝑃

𝑃𝑡
= 𝑓 (

𝑡

𝑡𝑟
) to the 

theoretical distributions (R1, R2, R3, R4). 

5 Results and discussion 

5.1 Establishment of threshold values 330 

The values of calibrated parameters shown in Table 1 served for the SWMM model calculations. Assuming rainfall intensity 

values corresponding to normal (Ptot,u=3.7 mm), heavy (Ptot,m=5.8 mm), and torrential (Ptot,g=21.9 mm) rain, outflow 

hydrographs were determined for tr=15 min; the Q(t) values were determined with at 10-s resolution. The simulations revealed 

the following values of maximum instantaneous flow and hydrograph volumes: Q(qu)m=0.275 m3/s and V(qu)=450 m3, 

Q(qs)m=0.735 m3/s and V(qs)=812 m3, and Q(qg)m=2.95 m3/s and V(qg)=3500 m3. It is worth noting that the values of the 335 

catchment outflow hydrographs were identical with the rainfall intensity distributions R1, R2, R3, and R4, as demonstrated by 

Szeląg et al. (2016). 

5.2 GLUE (Generalized Likelihood Uncertainty Estimation) 

Parameters were identified using outflow time series for two rainfall events of 24 July 2011 and 15 September 2010 (Kiczko 

et al., 2018). The threshold value of the correlation coefficient ensuring that 95% of the observations were enclosed within 340 
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95% confidence intervals was 0.920. The size of the behavioral obtained set was 3375. The confidence intervals were verified 

for two rainfall events of 30 May 2010 and 30 July 2010 (see Fig. B2 – Appendix B). The percentage values of the enclosed 

observation points were as follows: 30 May 2010: 91% and 30 July 2010: 47% (Kiczko et al., 2018). The poorer performance 

for 30 July 2010 results from the bias of the model output, whereas the maximum stormwater flows were predicted correctly.  

5.3 Estimation of coefficients in the logit model and assessment of goodness-of-fit 345 

Based on the determined values of the dependent variables and the corresponding explanatory variables (P tot, tr, α, dimp, nimp, 

nsew) for the assumed rainfall distributions (R1, R2, R3, R4), logit models were generated for calculation of the probability of 

exceeding the threshold values: maximum instantaneous flows (Qg,m) and outflow hydrographs (Vg). Table 2 presents the 

determined values of empirical coefficients (αj) and assessment of the goodness-of-fit of the calculation vs. measurements 

results in the logit models used for calculation of p=F(Qm,g) and p=F(Vg). The calculations indicated identical coefficient values 350 

in the case of temporal rainfall distributions R3 and R4 in the logit model; hence, the tables below show the results for temporal 

rainfall distribution R3. The analysis of the goodness-of-fit of the calculation results to the measurement results (SPEC, SENS, 

Rz
2) revealed that the proposed logit models were characterized by satisfactory classification abilities. 

 

Table 2: Calculated coefficients (αj) and measures of the goodness-of-fit of measurement results to the logit model calculations of the 355 
Qg,m and Vg values for rainfall distributions R1, R2, R3 and R4. 

Rainfall distribution R1 

Variable 
Q(qu)g,m Q(qs)g,m Q(qg)g,m 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 

α0 -0.235 0.083 -23.72 6.749 5.051 1.327 

α 2.571 0.988 1.901 0.821 0.091 0.028 

dimp -1.344 0.413 -1.13 0.473 -0.129 0.035 

nimp -234.241 84.098 -7.481 2.593 -5.449 2.057 

nsew -205.159 141.19 -377.74 107.016 -419.281 81.495 

Ptot 3.821 0.913 2.797 1.157 0.249 0.022 

tr -0.221 0.051 -1.125 0.139 -0.1 0.009 

 

SPEC=96.51; 

SENS=99.79; 

Rz
2=99.51 

SPEC=100; 

SENS=99.77; 

Rz
2=99.82 

SPEC=95.74; 

SENS=97.62; 

Rz
2=96.28 

Rainfall distribution R2 

Variable 
Q(qu)g,m Q(qs)g,m Q(qg)g,m 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 
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α0 -1.307 0.465 -3.509 0.785 6.582 1.386 

α 1.503 0.491 1.444 0.567 0.29 0.12 

dimp -2.971 0.542 -2.872 0.905 -0.029 0.015 

nimp -68.921 29.814 -56.207 26.698 -22.629 10.949 

nsew -114.428 53.26 -397.451 132 -666.661 88.012 

Ptot 2.792 0.355 3.867 0.81 0.468 0.044 

tr -0.052 0.007 -0.207 0.043 -0.092 0.009 

 

SPEC=97.43;  

SENS=98.97;  

Rz
2=98.66 

SPEC=99.28;  

SENS=99.57;  

Rz
2=99.48 

SPEC=98.06; 

SENS=98.13;  

Rz
2=98.10 

Rainfall distribution R3 

Variable 
Q(qu)g,m Q(qs)g,m Q(qg)g,m 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 

α0 -3.842 0.98 -2.908 0.916 1.726 0.675 

α 1.285 0.283 1.175 0.259 0.312 0.043 

dimp -1.869 0.3 -1.22 0.25 -0.152 0.043 

nimp -97.252 20.082 -70.814 18.365 -20.008 3.15 

nsew -161.108 32.34 -197.528 36.361 -264.179 40.089 

Ptot 3.068 0.261 1.959 0.164 0.267 0.017 

tr -0.022 0.002 -0.046 0.004 -0.027 0.002 

 

SPEC=95.79; 

SENS=97.11; 

Rz
2=96.93 

SPEC=95.92; 

SENS=96.11; 

Rz
2=96.01 

SPEC=97.60; 

SENS=96.89; 

Rz
2=97.25 

Rainfall distribution R1, R2, R3, R4 

Variable 
V(qu)g V(qs)g V(qg)g 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 

α0 -27.793 3.511 -23.483 2.997 -20.903 4.516 

α 5.427 1.963 3.142 0.917 2.837 0.688 

dimp -3.983 0.968 -3.075 1.381 -1.978 0.722 

nimp -48.794 21.066 -40.105 21.133 -31.321 14.474 

nsew -86.986 46.889 -66.569 32.38 -42.606 20.799 

Ptot 7.417 2.824 6.904 1.726 2.473 0.391 

tr -0.001 0.001 -0.001 0.0003 -0.001 0.008 
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SPEC=96.53; 

SENS=99.17; 

Rz
2=98.73 

SPEC=98.63; 

SENS=97.77; 

Rz
2=98.13 

SPEC=97.63; 

SENS=98.77; 

Rz
2=98.33 

 

As shown in Table 2, not less than 95.79% of the cases were correctly identified at the calculated value of p<p(Qg,m; Vg) and 

p ≥ p(Qg,m; Vg). The model was validated on 40000 independent rainfall events, for R1, R2, R3, R4 rainfall distribution (Table 

3).  360 

 
Table 3. Results of validation of logit models shown in Table 2 

Rainfall distribution R1 

Data to validation 
Q(qu)g,m Q(qs)g,m Q(qg)g,m 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 

40000 SPEC=96.00; SENS=95.60 SPEC=94.11; SENS=96.20 SPEC=96.20; SENS=95.20 

Rainfall distribution R2 

Variable 
Q(qu)g,m Q(qs)g,m Q(qg)g,m 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 

40000 SPEC=97.30; SENS=96.50 SPEC=96.20; SENS=95.22 SPEC=95.20; SENS=96.50 

Rainfall distribution R3 

Variable 
Q(qu)g,m Q(qs)g,m Q(qg)g,m 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 

40000 SPEC=95.50; SENS=97.10 SPEC=96.45; SENS=96.56 SPEC=97.12; SENS=96.45 

Rainfall distribution R1, R2, R3, R4 

Variable 
V(qu)g V(qs)g V(qg)g 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 

120000 SPEC=95.25; SENS=96.15 SPEC=96.03; SENS=93.17 SPEC=95.03; SENS=96.34 

 

The results of calculations of the goodness-of-fit measures of the logit models for the temporal rainfall distributions R1, R2, 

R3, R4 associated with the normal, heavy, and torrential rains confirm the high goodness-of-fit of the calculated and measured 365 

results. This confirms the suitability of the models for further analyses. 

5.4 Verification of the generated logit models vs. measurement data 

The analyses showed that, in 237 of the 248 events for which the empirical and theoretical rainfall distribution exhibited high 

convergence (R ≥ 0.96), the calculation results from the logit models were consistent with the simulation data provided by the 
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SWMM model in terms of the Qm classification. In the total number of the 248 rainfall events, the R1 temporal rainfall 370 

distribution was identified in 126 events (calculation results consistent with measurements in 122 events), 72 events 

represented the R2 temporal distribution (calculation results consistent with measurements in 69 events), and 58 events were 

determined as the R3 and R4 temporal distributions (simulation results consistent with measurements in 56 events). In the 

other 73 events (with R<0.96), the results of calculations performed in the logit models agreed with measurement results in 43 

events. In this group of events, 19 rainfall events were classified as the R1 temporal distribution (simulation results consistent 375 

with measurement results in 8 events), 23 events represented the R2 temporal distribution (calculation results consistent with 

measurement results in 17 events), 31 events were identified as the R3 and R4 temporal distributions (simulation results 

consistent with measurements in 18 events). The Vg value calculated for 321 rainfall events agreed with the measurement 

results obtained for 281 events. Table 4 shows a comparison of the calculation results provided by the proposed logit models 

with the measurement results obtained in the consecutive years (2010–2016). 380 

The table shows the agreement of the calculation results for the hydrograph parameters obtained via simulation with the 

SWMM model and logistic regression with regard to the classification of maximum flows and hydrograph volumes. The data 

presented in Table 4 indicate agreement of the logit model-based calculation results with the measurement results. 

 

Table 4. Comparison of measurement and calculation results in the analyzed period 385 

Year M 
Qm

mes<0.3 Qm
sim<0.3 Qm

mes > 2.5 Qm
sim > 2.5 Qm

mes<0.75 Qm
sim<0.75 Qm

mes > 0.75 Qm
sim > 0.75 

V(Q=0.3 m3·s-1) V(Q=2.5 m3·s-1) V(Q=0.75 m3·s-1) 

2010 47 18/15 20/18 3/9 3/6 30/24 22/20 17/23 15/19 

2011 51 20/23 15/19 2/7 2/5 29/28 26/23 22/23 18/16 

2012 36 15/17 12/14 3/7 2/6 22/20 18/18 14/16 11/18 

2013 41 20/18 16/15 4/8 3/9 28/22 24/20 13/19 10/22 

2014 44 18/15 14/12 3/8 2/8 29/25 26/22 15/15 12/13 

2015 58 23/18 18/22 3/9 3/10 39/32 33/29 19/26 15/23 

2016 44 24/17 22/13 4/9 4/7 34/25 30/22 10/19 12/17 

where: x1/x2 – number of rainfall events in a year with an exceeded x1=Qg,m/x2=Vg threshold value; calibrated values α, ninp, 

dimp, nsew specified in section “Hydrodynamic model” were used for verification calculations in the logit models shown in 

Table 4.  

 

The calculation results confirm that the proposed logit models include the key determinants of the variability of hydrograph 390 

parameters, which has been confirmed in theoretical studies and results of field studies conducted by many authors (Gironás 

et al., 2010; Guan et al., 2015; Thorndahl, 2009). The maximum difference between the number of rainfall events where the 

parameters of the catchment outflow hydrograph were identified correctly based on rainfall distribution and rainfall 
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characteristics by the logit model and the calibrated values of the SWMM model is 6 events, which was noted for 2015. In this 

case and in the other years, this is associated with problems with agreement between empirical and theoretical distributions 395 

specified in DWA-A 118E (2006). This is confirmed by the local nature of the dynamics of rainfall events in some urban 

catchments in Europe, as reported by various authors (De Paola and Ranucci, 2012; Todeschini et al., 2012) investigating the 

variability of temporal rainfall distribution in a rainfall event. Hence, there is a need to construct regional rainfall models that 

take into account the variability of measured rainfall distribution in an event rather than that assumed for another region 

(Wartalska et al., 2020). However, this may be the only solution in the absence of measurement data, which has been confirmed 400 

in studies on the use of typical DWA-A 118E (2006) of rainfall distributions to model the sewer network operation (Siekmann 

and Pinnekamp, 2011). Analysis of the data compiled in Table 3 demonstrates that, in addition to their theoretical value and 

the possibility to determine sensitivity (Qm, Vg), the proposed models can be used for identification of an event with a 

probability of exceeding the Qm,g or Vg values in the analyzed catchment. 

The analyses performed in the study (Table 2) indicate a strong effect of the flow path width (α), Manning roughness coefficient 405 

of impervious areas (nimp), retention depth of impervious areas (dimp), and Manning roughness coefficient of sewer channel 

(nsew) on the hydrograph volume and the maximum instantaneous stormwater stream outflow in the analyzed catchment. This 

is confirmed by the values of the αj coefficients. The other explanatory variables (Table 1) are statistically insignificant at the 

assumed confidence level of 0.05. These findings were confirmed by Barco et al. (2008), Kleidorfer et al. (2009), Skotnicki 

and Sowiński (2015), who calibrated hydrodynamic models of catchments in the USA (Santa Monica; area catchment of 217 410 

km2), Australia (Melbourne; area catchments of 37.98 ha and 89.10 ha), Poland (Poznań; area catchment of 6.7 km2). The 

present simulation results confirm the findings reported for larger catchments located in China (Li et al., 2014), where 

correlation coefficient values and entropy measures were used, the USA (Muleta et al., 2013), where the GLUE method was 

applied, and Iran (Rabori and Ghazavi, 2018), where the local sensitivity analysis was carried out. The analysis of the values 

of coefficients αj in the logit models indicates that only an increase in the flow path width (α) leads to an increase in the 415 

probability of exceeding Qg,m as well as Vg, which is confirmed by the analyses performed by Barco et al. (2008). An inverse 

correlation was found for the other parameters in the SWMM model (nimp, dimp, nsew). The results of the nsew simulations relative 

to Qg,m and Vg are confirmed by the calculations reported by Barco et al. (2008) and Li et al. (2014). The catchment analyzed 

by Li et al. (2014) was situated in China (Changsha city, area catchment of 11.7 ha). The impervious area accounted for 56% 

of the catchment. The increase in the nsew value reported by many authors (Barco et al., 2008; Fraga et al., 2016; Li et al., 2014) 420 

indicated an opposite relationship to that observed in this study. This shows that an increase in the nsew value results in a shorter 

stormwater flow time and accumulation of flow from channels, which leads to a rise in the stormwater level and reduction of 

the instantaneous flow stream in the cross-section closing the catchment (Leandro and Martins, 2016). The calculations 

performed by Li et al. (2014) confirmed the Qm=f(nimp) relationship obtained in the study; however, these analyses did not 

include the rainfall distribution and genesis. The nimp and dimp simulation results obtained in the study are relevant in the 425 

nonlinear reservoir SWMM model for simulation of the catchment outflow (Gironás et al., 2010; Rossman, 2015). An increase 
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in the catchment retention leads to a reduction in the amount of stormwater flowing into the sewer channels, which has an 

impact on the simulation results of the outflow in the cross-section closing the catchment. 

5.4.1 Sensitivity coefficients (hydrograph volume vs. maximum instantaneous flow) 

The plotted curves indicated that the smaller the volume of the calibrated catchment outflow hydrograph, the greater the 430 

sensitivity of the model to changes in the calibrated coefficients identified in the catchment model (Fig. 5a–d). As part of the 

present calculations, the effect of the rainfall intensity distribution (ξ) and the threshold value (Qg,m and Vg) on sensitivity 

coefficients Sxj was assessed. The analyses focused on the temporal R2 distribution, i.e. Euler type II, as this distribution is 

used for assessment of the effectiveness of the operation of sewer networks (Siekmann and Pinnekamp, 2011) and is thus 

highly important in engineering considerations. The analyses of the subsequent rainfall distributions (R1, R2, R3, R4) were 435 

based on the maximum flow caused by normal rainfall (Q=0.3 m3/s), which is determined by the occurrence of stormwater 

overflow in the case of the above-mentioned value. The results of these analyses are presented in Fig. 4–5. 

The analysis of the results of calculations of the probability of exceeding the threshold values Vg revealed that the rainfall 

intensity distribution did not influence the model sensitivity, which was confirmed by simulation experiments in the analyzed 

urban catchment (Szelag et al., 2016). The plotted curves (Fig. 5) indicated that the calibrated volume in the domain of the Vg 440 

value exhibits the greatest sensitivity (deterministic solution) to changes in dimp and α. This relationship was confirmed by 

Skotnicki and Sowiński (2015), who simulated outflows from a 6.7 km2 catchment in Poznań and employed local sensitivity 

analysis. Similar results were also obtained by Rabori and Ghazavi (2018) in their analyses of a catchment outflow in Iran. 

These correlations were also confirmed by the calculations reported by Mrowiec (2009), who modeled hydrographs in the 

urban catchment in Częstochowa (120 ha). The present analysis results were also are confirmed by Ballinas-Gonzáles et al. 445 

(2020), who demonstrated a major impact of the characteristics of impervious areas on the variability of the catchment outflow 

hydrograph. Different sensitivity analysis results were reported by Li et al. (2014), who demonstrated a crucial effect of nsew 

on the outflow hydrograph volume. Among the explanatory variables considered in this study (for any p in Eq. (4)), nimp was 

found to exert the lowest effect on the probability of exceeding Vg at any p value. The course of the curves and their variability 

(Fig. 5) indicate the lowest Sxi values of the calibrated coefficients (α, nimp, dimp, nsew) catchment outflow hydrographs in the 450 

case of torrential rainfall events, whereas the highest values were noted in the case of normal rainfall events (in the Chomicz 

scale). 
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Figure 4. Comparison of calculation results (deterministic and probabilistic solutions) of sensitivity coefficients (Sα, Sdimp, Snimp, Snsew) 

for (a–d) threshold values (Q=Qg,m) and temporal rainfall distribution ξ=R2; (e–h) temporal rainfall distributions (ξ=R1, R2, R3) 455 
for Qg,m=0.30 m3/s. 

 

Figure 5: Comparison of calculation results (deterministic and probabilistic solutions) of sensitivity coefficients (Sα, Sdimp, Snimp, Snsew) 

for (a ÷ d) threshold values V(Q)=Vgand temporal rainfall distribution ξ=R1, R2, R3. 

In terms of the selection of hydrographs for calibration followed by validation (SWMM model), the present results have an 460 

engineering aspect. This is associated with the fact that different relations V(Q)=f(xi) can be obtained by validation of the 

model coefficients at the calibration stage, which is crucial for minimization of the difference between measurement and 

simulation values. 

5.4.2 Sensitivity coefficient (maximum instantaneous flow vs. rainfall distribution) 

Based on the plotted curves (probabilistic solution), it can be concluded that, when the Qm value is calibrated in the region of 465 

Qg,m=0.30 m3·s-1 (uniform rainfall distribution R1, normal rain), the model shows the greatest sensitivity (percentile 0.50) to 

changes in nimp (deterministic solution), as confirmed by the value Snimp= -2.47 (Fig. 4g). The Manning roughness sewer 
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channel of coefficient (Snsew= -2.12; Fig. 4h), flow path width (Sα=1.25; Fig. 4e), and retention depth of impervious areas 

(Sdimp= -1.03; Fig. 4f) have a lower impact. The plotted curves and the deterministic solution indicate that the absolute Snimp 

and Snsew values for the R2 and R3 temporal rainfall distributions (deterministic solution) are lower than for the R1 distribution 470 

(Fig. 4e–f). In turn, in the case of Sα (Fig. 4e) and Sdimp (Fig. 4f), it was found that the absolute values of the sensitivity 

coefficients calculated for the R1 distribution have lower values than for R2 and R3. When the model is calibrated based on 

hydrographs reflecting the reaction of the analyzed catchment to normal rain (constant temporal rainfall distribution in an event 

- R1), the greatest effect on the Qm in the Qg,m domain is exerted by nimp and the lowest impact is shown by dimp (in terms of 

absolute values); this is indicated by the curves in Fig. 4f–g. In turn, a different relationship, i.e. the greatest effect of dimp, α 475 

and the lowest effect of nimp, was found for the R2 distribution (Fig. 4e–f). These relationships indicate a significant effect of 

temporal rainfall intensity distributions on the model sensitivity to changes in the coefficients calibrated in the domain of Qg,m 

values. 

The results of the present analyses may be highly important in engineering practice, as they confirm that, with the Qm values 

assumed as the basis for calibration, the hydrograph should be selected in a way facilitating identification of the coefficients 480 

(α, dimp, nimp, nsew) and validation, so that the values will be a result of rainfalls with similar intensity dynamics. Therefore, it 

should be underlined that, in the hydrograph intended for identification of model coefficients and validation, the relationship 

between the dependent variables and the calibrated coefficients must have a similar form. 

5.4.3 Sensitivity coefficients (maximum instantaneous flow vs. size of threshold Qm) 

The plotted curves (probabilistic solution) with the deterministic solutions showed that the greater the rainfall intensity (rising 485 

Qm value), the smaller the values of the sensitivity coefficients (Sα, Snimp, Sdimp) (Fig. 4a–d). This indicates a decline in the 

sensitivity of the model of prediciting the probability of exceeding Qg,m to changes in calibrated parameters (α, nimp, dimp) (Fig. 

4a–c). An inverse relationship was found for the nsew value (Fig. 4d). During the calibration of the catchment model for normal 

rainfall (maximum intensity in the middle of the event – R2), the model exhibited the highest sensitivity (Qg,m prediction) to 

changes in the retention of impervious areas (Sdimp= -2.342; Fig. 4b) and the lowest sensitivity to the Manning roughness 490 

coefficient of impervious areas (Snimp= -0.683; Fig. 4c). In the case of calibration of catchment model for heavy and torrential 

rainfall events, the maximum instantaneous flow Qm in the region of corresponding Qg,m values exhibited the highest sensitivity 

to changes in nsew (Fig. 4d). 

The relationships presented in this study have been scarcely analyzed by other researchers (Barco et al., 2008; Krebs et al., 

2014; Li et al., 2014) in terms of catchment outflow modeling. These relationships, which confirm the significant effect of 495 

rainfall intensity distribution on hydraulic phenomena occurring in the sewer network, were described by Jato-Espino et al. 

(2018) in their study of stormwater overflow. The authors showed a statistically significant effect of the rainfall intensity 

distribution on the relationship between stormwater overflow onto the land surface and catchment characteristics. A certain 

analogy with the calculation results described in the present study may be suggested. This is related to the fact that, along with 
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the increase in rainfall intensity, Jato-Espino et al. (2018) reported a decline in the sensitivity of the model to the values of 500 

selected catchment characteristics; this is equivalent to a decrease in the sensitivity of the model to the calibrated parameters. 

5.4.4 Sensitivity coefficients (uncertainty of estimated coefficients in the logit model) 

The calculations showed that the uncertainty of parameter estimation in logit models exerts a strong effect on the values of the 

sensitivity coefficients calculated for the analyzed cases. This is confirmed by the determined range of variability of the 

sensitivity coefficient values (Sα, Snimp, Sdimp, Snsew) depending on the size of the respective percentiles (Fig. 4 – 5). In most of 505 

the calculation variants (with the exception of α; Fig. 4a, 4e, 5a), the difference between the determined values of the sensitivity 

coefficients (for the different temporal rainfall distributions R1, R2, R3 and rainfall genesis - normal, heavy, and torrential 

rains) was shown to decrease with the increase in the percentile values. 

Different relationships were observed in the analysis of the variability of Sxi values shown in Fig. 5a. In this case, for percentiles 

below 0.36, the highest and the lowest Sα values were obtained for V(Qm,g=2.50 m3/s) and V(Qm,g=0.30 m3/s), respectively. 510 

The analysis of the effect of rainfall distribution (R1, R2, R3) on the model sensitivity (calibrated Qm value) revealed an 

increase in the difference in the sensitivity coefficient Sα values with the increase in the percentiles. As shown by the analysis 

of the values of sensitivity coefficients Sα and Sdimp (Fig. 4a, 4b), the relationship Sα(dimp)(Qm=0.75 m3/s) > Sα(dimp)(Qm=2.50 

m3/s) was obtained for percentile values above 0.42, whereas an inverse relationship was found for lower percentile values. 

6 Summary and conclusions 515 

Modeling of outflows and calibration of hydrodynamic models with design of tools supporting this task represent a relevant 

current research topic. It is necessary to search for methods that will yield reliable results reflecting the reality as well as 

possible on the one hand. On the other hand, with their acceptable time- and cost-efficiency in retrieval and analysis of data, 

the methods should have the potential to be used in practice by a wide group of engineers. This study has shown that the 

logistic regression model can be used for analyses of the sensitivity of the maximum flow in a hydrograph and hydrograph 520 

volume in a rainfall event. The hydrograph parameters depended on the temporal rainfall intensity distribution in the rainfall 

event and parameters identified in the SWMM model. In addition to their scientific aspects, the proposed logit models may be 

a useful tool for forecasting the variability of the parameters of catchment outflow hydrographs, which confirms the usefulness 

of the developed tool. 

The sensitivity coefficient proposed in the study facilitates determination of the impact of selected parameters of the SWMM 525 

model on the outflow hydrograph parameters with consideration of rainfall genesis and variability of temporal rainfall 

distribution in a rainfall event. Furthermore, it has been demonstrated that the rainfall genesis and the temporal variability of 

rainfall intensity in a rainfall event should be included in the selection of hydrographs for calibration and validation of the 

model. It was found that the higher the rainfall intensity determining the modeled outflow hydrograph, the lower the sensitivity 

of the identified SWMM model parameters to the maximum outflow and hydrograph volume. The calculations have indicated 530 
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that the uncertainty of the coefficients identified in the logit model has a significant impact on the determined sensitivity 

coefficients. The aspects discussed above are highly important for the procedure of hydrodynamic model calibration, which 

ultimately has a significant effect on the accuracy of identified model parameters. 

Given the usefulness of the presented calculation results, further investigations are recommended to verify the logit models 

and relationships presented in this study. There is also a need for analyses of other urban catchments with different physical 535 

and geographical characteristics, which may contribute to development of a universal model. 

7 Appendices 

Appendix A: List of Symbols 

tr – rainfall duration, 

Ptot – rainfall depth, 540 

αj – estimated coefficient of logistic regression model, 

α0 – rainfall efficiency coefficients taking into account the normal, heavy, and torrential rain types, 

qu – hydrograph caused by normal rainfall (according to the Chomicz scale), 

qs – hydrograph caused by heavy rainfall (according to the Chomicz scale), 

qg – hydrograph caused by torrential rainfall (according to the Chomicz scale), 545 

R1, R2, R3, R4 - temporal of rainfall distribution, 

V – volume of hydrograph, 

Qm – maximum instantanous flow, 

Vg – threshold of volume of hydrograph, 

Qg,m – threshold of maximum instantanous flow, 550 

ξ –  function describing the temporal intensity distribution, 

nimp  – Manning roughness coefficient for impervious areas, 

nsew – Manning roughness coefficient for sewer channels, 

α – coefficient for flow path width, 

GLUE – Generalized Likelihood Uncertainty Estimation,  555 

dimp – retention depth of impervious areas, 

Sxj – sensitivity coefficient, 

p – probability of exceeding of Qg,m and Vg, 

SWMM – Storm Water Management Model, 

SPEC – Specificity, 560 

SENS – Sensitivilty, 

Rz
2 – calculation error, 
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ε – empirical coefficient for conversion of the Qm
*value into p*, 

Q(t) – outflows from of the catchment at time t, 

x1, 2, j=n – calibrated parameters in the SWMM model, 565 

 

Appendix B: Supporting graphical information 

 

 

Figure B1. Dimensionless rainfall curves P/Ptot=f(t/tr) obtained from measurements performed in 2008–2016. 570 
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Figure B2. Comparison of measurement results of hydrograms of outflow from the catchment area with GLUE calculations. 

 

 575 

 

Figure B3. Calculated likelihood function -  scatter plots of M values versus calibrated catchment parameters in SWMM. 
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